Search results

Search for "argon ions" in Full Text gives 18 result(s) in Beilstein Journal of Nanotechnology.

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • simultaneously irradiated, keeping the experimental conditions the same. The experiment was performed at high vacuum ≈5 × 10−6 Torr and at room temperature. Argon ions (100 keV) have been used to irradiate the samples at an incident angle of θ ≈ 60° with respect to the surface normal [16]. The area in which the
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Ultralow-energy amorphization of contaminated silicon samples investigated by molecular dynamics

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2023, 14, 834–849, doi:10.3762/bjnano.14.68

Graphical Abstract
  • process are the presence of a contamination layer on top of the sample and the continuous sputtering process, which can be decomposed in two steps: (1) a bombardment step, where argon ions are shot at a specific angle and a specific energy towards the sample, and (2) a cooldown step, where the target is
  • implantation of higher-energy argon ions. To elaborate the analysis of the amorphization coefficient, we plotted the variation of the thickness for each region of interest for all simulation conditions. In Figure 3, we show the evolution of the slab thickness for the amorphous and partially amorphous regions
  • the sputtering of silicon covered with a water layer by ultralow-energy argon ions. For applications where the lowest amount of sample damage is required, higher impact energies need to be avoided since the thickness of the amorphous layer increases with energy. For such applications, grazing
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2023

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • by molecular dynamics (MD) simulations how one of the most commonly found residual contaminations in vacuum chambers (i.e., water adsorbed on a silicon surface) influences sputtering by 100 eV argon ions. The incidence angle was changed from normal incidence to close to grazing incidence. For the
  • sputtered largely depends on the incidence angle. This fraction is the largest for incidence angles between 70 and 80° defined with respect to the sample surface. Overall, it changes from 25% to 65%. Keywords: angle dependency; argon ions; contamination; focused ion beams; ion bombardment; low energy
  • depth. Investigations performed with low-energy argon ions [15][19][20] have shown that the current model describing the sputter yields and the sputtering processes (such as sputtering threshold and the amorphization process) does not fit with experimental data, leading to discrepancies that cannot be
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • gas phase and subsequent film growth can be computed using, for example, SIMTRA [37] and NASCAM [38] codes, respectively. The evolution of the sputtering yield calculated by SRIM for carbon (C), titanium (Ti), and Au targets as a function of the kinetic energy of the bombarding argon ions is presented
  • in Figure 4. The kinetic energy of the argon ions ranges from 100 to 1100 eV, which are typical values for MS discharges. For the calculation, ions are assumed to impinge the surface at normal incidence and the thickness of the target is set to 1 µm. The sputtering yield values are averaged over 5000
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Bin Xing,
  • Rakhim Rakhimov,
  • Wenbin Zuo,
  • Alexander Tolstogouzov,
  • Chuansheng Liu,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2020, 11, 383–390, doi:10.3762/bjnano.11.29

Graphical Abstract
  • and ion fluence are qualitatively the same as those of the flat targets. The obtained result can be compared with a study by Ghoniem et al. on the sputtering of Re and W nanorods with low-energy argon ions in which the authors have found the formation of rather weak ripple structures on the stem side
PDF
Album
Full Research Paper
Published 24 Feb 2020

Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode

  • Ditty Dixon,
  • Deepu Joseph Babu,
  • Aiswarya Bhaskar,
  • Hans-Michael Bruns,
  • Joerg J. Schneider,
  • Frieder Scheiba and
  • Helmut Ehrenberg

Beilstein J. Nanotechnol. 2019, 10, 1698–1706, doi:10.3762/bjnano.10.165

Graphical Abstract
  • samples were analyzed using a focused (30–400 µm spot size), monochromatic Al Kα X-ray source. The Kα charge compensation system was employed during the experiment, using electrons of 8 eV energy and low-energy argon ions to prevent any localized charge build-up. The spectra were fitted with one or more
PDF
Album
Full Research Paper
Published 13 Aug 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • generated in the analyzer. The work function of the sample was calculated as WF = hν Ecut-off, where Ecut-off was determined from the intersection of the linear extrapolation of the secondary-electron cut-off (SECO) with the background. All samples were sputtered with argon ions using a scanning focused ion
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • using a microfocused, monochromated Al Kα X-ray source (30–400 µm spot size). The K-Alpha charge compensation system was employed during analysis, using electrons of 8 eV energy and low-energy argon ions to prevent any localized charge build-up. Auger spectroscopy was performed using a PHI 680 (Physical
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

SO2 gas adsorption on carbon nanomaterials: a comparative study

  • Deepu J. Babu,
  • Divya Puthusseri,
  • Frank G. Kühl,
  • Sherif Okeil,
  • Michael Bruns,
  • Manfred Hampe and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 1782–1792, doi:10.3762/bjnano.9.169

Graphical Abstract
  • , monochromated Al Kα X-ray source (30–400 µm spot size). The K-Alpha charge compensation system was employed during analysis, using electrons of 8 eV energy and low-energy argon ions to prevent any localized charge build-up. The spectra were fitted with one or more Voigt profiles (binding energy uncertainty
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Preparation and morphology-dependent wettability of porous alumina membranes

  • Dmitry L. Shimanovich,
  • Alla I. Vorobjova,
  • Daria I. Tishkevich,
  • Alex V. Trukhanov,
  • Maxim V. Zdorovets and
  • Artem L. Kozlovskiy

Beilstein J. Nanotechnol. 2018, 9, 1423–1436, doi:10.3762/bjnano.9.135

Graphical Abstract
  • . At a membrane thickness of greater than 30 µm, it is desirable to first carry out the opening of the barrier layer on the back side using argon ions and then followed by the usual bilateral acid pickling. To compare the topological features of PAMs produced with different etching technologies of the
  • ) fabricated using etch type I (with area 70 × 70 mm). The barrier layer was first opened on the back side using argon ions followed by the usual bilateral acid pickling. (A) top view (outer surface) and (B) top view (inner surface). The insets show optical images of the PAM and the enlarged SEM top view of
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2018

Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting: combining renewable raw materials with clean fuels

  • Stefanie Krüger,
  • Michael Schwarze,
  • Otto Baumann,
  • Christina Günter,
  • Michael Bruns,
  • Christian Kübel,
  • Dorothée Vinga Szabó,
  • Rafael Meinusch,
  • Verónica de Zea Bermudez and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2018, 9, 187–204, doi:10.3762/bjnano.9.21

Graphical Abstract
  • 8 eV electrons and low-energy argon ions to prevent any localized charge build-up. The spectra were fitted with one or more Voigt profiles (binding energy uncertainty: ±0.2 eV). The analyzer transmission function, Scofield sensitivity factors [54], and effective attenuation lengths (EALs) for
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2018

Dry adhesives from carbon nanofibers grown in an open ethanol flame

  • Christian Lutz,
  • Julia Syurik,
  • C. N. Shyam Kumar,
  • Christian Kübel,
  • Michael Bruns and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2017, 8, 2719–2728, doi:10.3762/bjnano.8.271

Graphical Abstract
  • eV energy and low-energy argon ions to prevent any localized charge build-up. The spectra were fitted with one or more Voigt profiles (binding energy uncertainty: ±0.1 eV). All spectra were referenced to the C 1s peak of hydrocarbons at 285.0 eV binding energy, controlled by means of the well-known
PDF
Album
Full Research Paper
Published 15 Dec 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • charged argon ions used for sputter deposition. Thus PVD potentially provides good control over the wide range of desired structures and qualities of MoS2 films. Here we present morphological, structural, spectroscopic and electrical investigation of PVD MoS2 thin films with thicknesses in the range of
  • substrate temperature. The applied sputter deposition process employs a MoS2 target sputtered by argon ions. Ar (atomic number 18) preferably sputters light sulfur atoms (atomic number 16) from the target. Heavier molybdenum atoms (atomic number 42) are harder to sputter. Thus sputter and back-sputter
PDF
Album
Full Research Paper
Published 22 May 2017

Study of the surface properties of ZnO nanocolumns used for thin-film solar cells

  • Neda Neykova,
  • Jiri Stuchlik,
  • Karel Hruska,
  • Ales Poruba,
  • Zdenek Remes and
  • Ognen Pop-Georgievski

Beilstein J. Nanotechnol. 2017, 8, 446–451, doi:10.3762/bjnano.8.48

Graphical Abstract
  • angle of incidence was 30° and the emission angle was along the surface normal. The K-Alpha charge dual compensation system was employed during analysis, using electrons and low-energy argon ions to prevent any localized build-up of charge. The measured high-resolution spectra were fitted with Voigt
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2017

Obtaining and doping of InAs-QD/GaAs(001) nanostructures by ion beam sputtering

  • Sergei N. Chebotarev,
  • Alexander S. Pashchenko,
  • Leonid S. Lunin,
  • Elena N. Zhivotova,
  • Georgy A. Erimeev and
  • Marina L. Lunina

Beilstein J. Nanotechnol. 2017, 8, 12–20, doi:10.3762/bjnano.8.2

Graphical Abstract
  • the chamber was 5·10−7 Pa. The ion current was measured by a Faraday cup of 1 mm diameter fixed on the target holder. GaAs and InAs two-inch wafers having (001) crystallographic orientation were used as targets; the wafers were preliminary cleaned with argon ions. The wafers were isolated from the
  • targets by molybdenum screens during cleaning. Ion etching was carried out at an energy of 180 eV and with etching rates less than 0.3 ML/s. It was shown in [27] that the incorporation of argon ions in the GaAs wafer was not observed at energies below 200 eV. This technique makes it possible to remove the
  • target results in a high inhomogeneity of the thickness of the formed quasi-layer. In practice, this results in significant difference in density and dimensions of the islands in the central and peripheral areas of the substrates. Ion energy The energy of the argon ions determines the deposition rate
PDF
Album
Full Research Paper
Published 03 Jan 2017

Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

  • Urs Gysin,
  • Thilo Glatzel,
  • Thomas Schmölzer,
  • Adolf Schöner,
  • Sergey Reshanov,
  • Holger Bartolf and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2015, 6, 2485–2497, doi:10.3762/bjnano.6.258

Graphical Abstract
  • . Firstly, we discuss KPFM results from a contact surface of a copper alloy utilized in a power switch. The presence and shape of chromium grains embedded in the copper alloy are clearly visible. The contrast in the measured work function is strongly enhanced by sputtering the sample with argon ions to
PDF
Album
Full Research Paper
Published 28 Dec 2015

Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces

  • Szymon Godlewski,
  • Jakub S. Prauzner-Bechcicki,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymoński

Beilstein J. Nanotechnol. 2015, 6, 1498–1507, doi:10.3762/bjnano.6.155

Graphical Abstract
  • the low 10−10 mbar range. The preparation of samples was performed by the application of the standard procedure containing sputtering with argon ions and thermal annealing [36]. To obtain well-reconstructed large terraces, the last preparation cycle was followed by slow cooling of the sample. The
PDF
Album
Full Research Paper
Published 10 Jul 2015

Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?

  • Baran Eren,
  • Dorothée Hug,
  • Laurent Marot,
  • Rémy Pawlak,
  • Marcin Kisiel,
  • Roland Steiner,
  • Dominik M. Zumbühl and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2012, 3, 852–859, doi:10.3762/bjnano.3.96

Graphical Abstract
  • Elias et al. [5]. Moreover, low-energy argon ions also result in changes in the atomic structure of HOPG and, therefore, are not desired in this work [22]. Results and Discussion Raman spectroscopy Raman spectroscopy is a frequently used tool for the analysis of graphitic materials. The Raman spectrum
PDF
Album
Full Research Paper
Published 13 Dec 2012
Other Beilstein-Institut Open Science Activities